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ABSTRACT 

For a cosmological model with d non-compact and D compact spatial 

dimensions and symmetry R' X Sd X SD, we calculate the entropy produced 

in d dimensions due to the compactification of D dimensions and show it 

too small to be of cosmological interest. Although insufficient entropy 

is produced in the model we study, the contraction of extra dimensions 

does lead to entropy production, We discuss modifications of our 

assumptions which may lead to a large entropy production. 
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I INTRODUCTION 

The origin of the observed internal gauge symmetries from 

symmetries of an internal compact space is an attractive approach for 

the unification of particle physics with gravity. ‘92 The basic idea may 

be implemented by several approaches, a common assumption being that 

there are more than four space-time dimensions, with the extra 

dimensions unobservable today because they are compactified to a very 

small scale. The natural scale of the compactified dimensions is 

expected to be the Planck length. 

As the energies necessary to probe the extra dimensions are a 

factor of 3X1C14 larger than that of the largest proposed terrestrial 

accelerator, it is natural to attempt to use the primordial accelerator, 

the big-bang, to study the effect of extra dimensions. Several authors 

have suggested that the existence of extra dimensions might be 

responsible for the large observed entropy of the universe. 3-6 The basic 

reason for the entropy increase is that one may have epochs of 

increasing non-compact dimensions with decreasing mean volume due to the 

contraction of compactified dimensions. In an isentropic universe, the 

decrease in mean volume leads to an increase in temperature, even with 

increasing non-compact dimensions. The fact that the temperature 

increases during expansion of the non-compact dimensions may be 

interpreted as an increase in the effective entropy of the non-compact 

dimensions. 7 

In this paper we analyze entropy production in detail for a class 

of cosmological models in more than 4 dimensions and conclude that there 

is negligible entropy production. This is a disappointment, since a 
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large entropy production from extra dimensions could, in principle, 

solve many cosmological problems, and might be considered a competitor 

of the usual Inflationary models. a 

We will consider cosmologies with N spatial dimensions and 1 time 

dimension. We will also assume the N spatial dimensions are split into 

d non-compact dimensions (large today) and D compact dimensions (small 

today). The particular cosmology we will study is described by a metric 

in the block diagonal form. 

gMp(x,Y) = (-A 

0 

R~Wgmp (x) 

0 

1 

0 0 R;d,,W 
(1.1) 

Here M,P = O,l,....N; m,p, = l.....d; u,~ = d+l,....N; g,,(x) and g 
PT 

(y) 

are the metrics for maximally symmetric d-dimensional and D-dimensional 

spaces; and Rd(t) and RD(t) are the cosmological scale factors for the 

d-dimensional and D-dimensional spaces; xi and y" are the coordinates 

for the d-dimensional and D-dimensional spaces. 

Cosmologies with the metric (1.1) were first considered by Freund' 

in the context of Jordan-Brans-Dicke Theories, ll-dimensional 

supergravity, and lo-dimensional N = 1 supergravity. They were later 

considered in Kaluza-Klein theories by Sahdev.6 We will follow the 

general approach of Sahdev, and assume the metric (l.l), the Einstein 

equations in N+l dimensions without external fields or a cosmological 

constant, and that when the universe is "small enough" such that the 

curvature of the compact dimensions is negligible the N+l dimensional 

stress energy tensor has the perfect fluid form. (M,P = O,l.....N) 

TMP = PgMp + (P + P)UMU, (1.2) 
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where p is pressure, p is the energy density, and IJM is the velocity N 

-vector of the fluid. 

The solutions to the Einstein equations depend upon the curvature 

of the d-dimensional and the D-dimensional spaces. We will assume that 

the curvature of the d-dimensional space is zero, and that the curvature 

of the D-dimensional space is positive. As noted by Dicke and 

Peebles ,’ ’ and emphasized by Guth,” the choice of a zero-curvature 

space is unnatural (AKA the flatness problem). A “natural” cosmology 

would have the curvature of both spaces comparable to some fundamental. 

microphysics scale, w mpl (where mpl is the Planck mass), and the 

curvature of the d-dimensional space large today because of entropy 

creation (AKA inflation) at an earlier epoch. It is also possible that 

as entropy creation solves the flatness problem, it also solves the 

horizon problem by creating the observed entropy of the universe in a 

causal (hence possibly smooth) region of space. We will show in this 

paper that the entropy creation in the models we cona ider is 

insufficient for the above desiderata. 

II THE FIELD EQUATIONS 

With a metric given by (1.1) and a perfect fluid form for the 

StreSS-energy tensor (1.2) the Einstein equations, RMP - 1/2gz,p R = 

-8nGTMp, give 
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&i$+D$=Lg [p(2-N)-pN) 

. . . . 

& ($ + $2 + * = g (p - P) 

. . * . 

RD 
-2+ &@ + ; (t$ + D$ = SIP - p) , 

(2.1 .a) 

(2.1 .b) 

(2.1 .c) 

where N is the number of spatial dimensions, N = D + d. In (2.1), E is 

the fundamental constant that appears in the gravitational part OP the N 

+ 1 dimensional action (5 has dimension of length 
N-l ) 

IN+, = -(16&-’ j dN+‘x gN+, RN+, (2.2) 

where gN+l and RN+1 are the (N+l)-dimensional metric determinant and 

scalar curvature. Upon integration of (2.2) over the extra dimensions 

to obtain an effective 4-dimensional gravitational action, c is related 

to Newton’s constant, GN, by 

E - GNVD’ (2.3) 

where VD is the volume of the compact D-dimensional space. 

In the Kaluza-Klein approach all fields are massless in higher 

dimensions. Therefore we will assume an equation of state for 

radiation, Np = p. The conservation law T 
MP 

;P 
= 0 gives 

N+l N+l 
PO = PoOo = constant, (2.4) 

where (1 ‘~ is the dimensionless mean spatial volume given by ((I is some 
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arbitrary constant with dimension length -1 ) 

0 = a CR; RyN, (2.5) 

and p, and o. are the appropriate quanities defined at an arbitrary e 

In principle it is straightforward to solve the field equations for 

RD(t) and Rd(t). However in practice it is convenient to make some 

changes of variables. Let us change the time coordinate according to (T 

is an arbitrary constant with dimension of length) 

dt = Ya(x)dx. (2.6) 

Since o(x) is a positive function of time, the new co-ordinate x is 

monotonic in t. 

In terms of o and x, (2.1.b) has the first integral 

Rd a (X - x0) 
-= 

Rd 
N-l 

0 

(2.7) 

where ’ denotes d/dx, x0 is an integration constant, and B is a 

dimensionless constant giVen by (c has dimension length N-l 
; o. is 

dimensionless; p, has dimension length -N-l) 

B =+ y2p ,J 
N+l 

0 0 
(2.8) 

For simplicity we choose the magnitude of Y to give B = 1. With the 

substitutions (2.5) and (2.61, (2.1.~) becomes 
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(N-l) - (aN-‘)‘I 
Zd/D 

sN-1 
= (Nil) D Y2 ,2N/D [Bd, 

(2.9) 

and (2.1.a) becomes 

,N- 1 N-l ” 
(0 ) + 1 &j-p1 (0 

N-l )‘2 - 2; (x-x0) (ON-‘)’ 

+ (N-l ) sN-’ + (N-l) ; (x-Q2 = 0. (2.10) 

Note that x appears in these equations only in derivatives or in the 

combination (x-x0); consequently we can translate x without altering the 

form of the equations, and in particular we can always choose to set x 
0 

= 0 as different values of x0 cannot lead to physically different 

solutions. 

We choose the remaining arbitrary constant n. to satisfy e N/D Y= N. 

and make two further changes of variable 

* = oN-’ ; v = ~ 2N(D-1 )/D 
Rd 

2d/D 
(2.11) 

to render the system into the final form 
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F XW’ + (N-l )w + (N-l) ; x2 = 0 (2.12.a) 

(N-1101 - ww” = N(N-1) Dv (2.12-b) 

D Y’ N(D-1) w’ 5 -- ~__ 
T;Iv d(N-1) ; = w (2.12.c) 

The first of these is a second order equation in w alone, and it is not 

difficult to verify that any solution of this equation, when used to 

determine Y through the second equation, also satisfies the third. The 

cause of this apparent redundancy is that we have performed an 

integration in going from (2.1) to (2.121, and have thereby reduced the 

system to only two independent equations. 

It is worthwhile to have an expression for RD and Rd in terms of w 

and v 

RD _ a-N/D UN/(N-l ) y-1 /2 

R 
d 

= wN(l-D)/d(N-l) v D/2d 

(2.13.a) 

(2.13.b) 

In the next section we give the solutions to the system of equations 

(2.12). 
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III SOLUTIONS TO THE EQUATIONS OF MOTION 

In this section we describe solutions to the equations of motion. 

In the special case d = 1 and D = 2 there is a simple analytic solution 

first found by Sahdev. 6 This analytic solution is discussed in Appendix 

A. For more interesting values of d and D it is necessary to solve the 

equations numerically. We will integrate the equations assuming that at 

X = 0, the mean volume vanishes, i.e. w(x=O) = 0. By performing a 

power series expansion around x = 0. we find 

N-l 2-ND 4 
w=2x -5 ax + 0(x6) (3.1 .a) 

v = ax 4 + 0(x6) (3.1 .b) 

where a is an arbitrary positive constant. By doing a similar expansion 

one finds that it is impossible to make both RD and Rd vanish about a 

non-zero value of x. Therefore the only solutions which start out with 

both the compact and the open scale-factor zero must begin at x = 0. 

(This does not contradict the time-translation invariance of the 

original equations, since the relation of t to x includes an arbitrary 

constant of integration.) Using the definitions of RD and Rd in terms 

of v and W, one finds simple power-law behavior near the initial 

singularity; 
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RD = U-N/D .-l/2 (N-l+ N/(N-1) ,2/(N-I) 
(3.2.a) 

Rd = (y) 
NC’-D)/d(N-1) aD,2d x2,(N-,) 

(3.2.b) 

It is not surprising that the two scale-factors start off with similar 

behavior. It is a familiar result from conventional Robertson-Walker 

models that curvature terms are negligible near the initial singularity. 

Once we know the behavior of the solutions near x = 0, we can use 

the equations of motion to integrate the system. In Figure 1 we give an 

example of a solution for d = 3 open and D = 7 compact dimensions. The 

behavior of RD and R d is qualitatively the same for any values of d and 

D. In all solutions one finds that RD starts from zero at an initial 

singularity, increases to a maximum, and then vanishes at a second 

singularity. Rd also starts from zero, with the same growth rate as RD. 

However, at the final singularity Rd always becomes infinite. Another 

general characteristic of the solutions is that soon after the compact 

dimensions reach RM, the mean volume of the scale factors actually 

decreases even though the scale factor for the usual dimensions 

continues to increase. The decrease in the mean volume leads to an 

increase in the temperature so long as the expansion is isentropic. 

This increase in temperature while the d-dimensional space expands leads 

to an increase in entropy density. In Figure 2 we plot the temperature 

as a function of x for the model of Figure 1. We note that as the 

second singularity is approached, the temperature (hence the entropy 

density) diverges. However, as we discuss in the next section, we 

cannot use our equations arbitrarily close to the singularity. 
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We have a single parameter set of solutions for w and Y, and in 

addition there are two relations between the three constants a, Y and B. 

Apparently we then have a two-parameter family of solutions, but a gauge 

degree of freedom removes one of them. This happens since kd = 0, and 

we can change Rd by a constant scaling without producing physically 

different solutions. The other scale-factor RD does not have this 

scaling degree of freedom because we have made the choice k D = 1. 

The existence of a single parameter dependence in the solutions can 

be made clear by exhibiting the scaling behavior of the solutions for 

different constants a in (3.1). If w and v are a pair of functions 

satisfying the field equations, it is easily seen that b2w(x/b) and 

b2v(x/b) are also solutions. Two quantities of physical significance in 

the solution are the compact Scale-factor RD and the density p. These 

scale with w and v according to 

RD = a-N/D b(N+l )/(N-1) ,N/(N-1) “-l/2 (3.3) 

2N/D 
p = p (1 N+l ,,-(N+l) _ a 

b-2(N+1 )/(N-1) ;(N+l )/(N-1) 
(3.4) 

00 
8~~0 

where to get (3.4) we have used the fact that we have set B = 1. 

Because of the gauge degree of freedom, neither b nor c( has an 

unambiguous physical interpretation, but we can see from the above that 

the combination a -N/D b(N+I)/(N-l) appears in the definition.of R D and 

P. and can therefore be taken as a physically significant parameter in 

the solutions. 
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Let us suppose that we have found a pair of Functions w and v such 

that the combination w N/(N-1 ) .-l/2 has a maximum value of one. Using 

the scaling derived above, this allows us to parametrize our set of 

solutions as 

RD = RM ,N/(N-1) V-112 (3.5) 

p = (B~N$)-~ ,-(N+l)/(N-1) (3.6) 

The quantity RI, is simply the maximum value of R, and since the 

curvature of the compact dimensions has been normalized to one, it is 

the maximum physical size attained by the extra dimensions. This is a 

convenient way to parametrize the complete set of solutions. 

IV DECOUPLING OF THE EXTRA DIMENSIONS 

Since the extra dimensions are presumably stable today, we must 

assume that before the second singularity a miracle occurs to stabilize 

the extra dimensions. A miracle is necessary for stabilization of the 

extra dimensions since for D > 1, M4 X BD (BD is a compact D-dimensional 

space) is not a static vacuum solution to the Einstein equations. The 

miracle may be in the Form of additional matter fields,12 or a 

cosmoiogical constant. 13 In this paper we do not attempt to explain the 

miracle, but rather push the equations as far as we can before we know 

they fail. 
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A critical assumption in deriving the dynamical equations of this 

model Universe is the perfect-fluid form of the stress-energy tensor. 

We might expect this assumption to fail first when the difference in 

expansion rate between the open and compact dimension becomes large, 

because perfect fluid behavior requires local isotropy in the 

distributions of particles, and this in turn demands that energy can be 

redistributed along different dimensions faster than the relative 

expansion rate, i.e. IR /R d d - iD/RDI > T, where f is a typical reaction 

rate. Since before freeze-out all the particles are massless, on 

dimensional grounds we expect f - T. Therefore a rough criterion for 

perfect fluid behavior might be l?/RT < 1, where R refers to either Rd or 

RD. The same problem arises in conventional cosmological models with 

anisotropy, and the failure of the perfect fluid approximation leads to 

an effective equation of state with non-zero viscosity 14 . However, the 

qualitative behavior of solutions does not change; expanding or 

contracting dimensions continue to expand or contract, although at 

different rates. 

Proper consideration of these problems is beyond the scope of this 

paper. Instead, we shall assume perfect fluid behavior throughout the 

model, until a critical point is reached when the wavelength of 

excitation3 in the compact dimensions tx - T-l) becomes equal to the 

radius of the compact space. At this point, perfect fluid behavior 

fails for a more serious reason, in that the concept of a classical 

stress-energy tensor breaks down; the permissible energy states in the 

compact dimension3 are quantized by the finite size. The transition 

from ciassical behavior occurs roughly when RDT = 1, T being the 

temperature calculated from p = TN+‘. At this point the excitations of 
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the extra dimensions correspond to massive particles, m-R ;’ > T, and 

the pressure in the extra dimensions is effectively zero. The 

excitation3 in the non-compact dimensions describe massless particles 

with p=dp, so the assumption of isotropy for the stress-energy tensor 

fails and we cannot use our equations beyond this point. 

What happens next is a difficult question. At some stage we want 

the compact dimensions to cease contracting and become stabilized at a 

finite radius. This may be achieved by a suitable change in the stress- 

energy tensor. Since every Kaluza-Klein model is entitled to at least 

one miracle, the simplest assumption is to invoke ours here and assume 

that freeze-out and stabilization occurs at the same point 15 . If we do 

this then our model is completely calculable up to freeze-out, and 

immediately afterwards it is assumed that the open dimensions continue 

to expand as a conventional Robertson-Walker Universe. A possible 

alternative is that after freeze-out the compact dimensions continue to 

contract (and are still coupled to the open dimensions), with a 

semiclassical stress-energy tensor whose form we can only guess at, and 

at some time later stabilization occurs. The difficulty with this is 

that it need3 two miracles instead of one, and it leaves a grey area 

between freeze-out and stabilization in which the field equations are 

unknown. For the remainder of this section we will assume freeze-out 

and stabilization are simultaneous. In section VI we will generalize 

this restriction and aho,! that entropy production is a maximum if 

freeze-out and stabilization are concurrent. 
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From (3.5) and (3.6) we have 
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RN- 1 
N+l M PRD = ~ (WV 

-l/Z N+l 
1 

~ITEN 
(4.1) 

Freeze-out occ”rs when T = R -1 
D ’ and since p = T N+l , the left hand side 

of (4.1) is one at freeze-out. We denote by a subscripted * the values 

of the parameters at freeze-out. From (4.1) 

( u*v*-“2)N+’ = ~TNG R;-N (4.2) 

Since we are assuming R, is the present distance scale of the extra 

dimensions, R, is related to c by 

6 = ” Rd-’ = R; R;;’ 
D ~1 

(4.3) 

where R 
Pl 

is the Planclc length and in (4.3) we have ignored factors 

which appear in the formula for V D = 2~‘~+“‘*/r[(D+1)/23. 

We can now express three dimensionsless length ratios in terms of’ 

(R ,R ) = w N/(N-l)v-l/2 
*M * * (4.4.a) 

(REI/~pl)d-l = ~,Nv, (d+l )/2u,(l-Nd)/(N-1 1 (4.4.b) 

(Rx/Rpl)d-’ = 87i~~I/wI . (4.4.c) 

As discussed in the previous section, for particular values of D 

and d there is a one-parameter family of solutions generated by, for 

instance, different values of the constant a in the initial values of w 

and ” [see (3.1)1. For a given value of a one may integrate the 

equations forward in time until freeze-out at T = R;‘. Different values 

of a would correspond to different values of (R,/R pl) if we stop at the 
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same value of x+. However, one may take advantage of the invariance of 

the eqUatiOn3 under scale transformations (w(x)+b2w(x/b);v(x)+b2v(x/b)) 

to ~study the entire family of solutions from the numerical solution for 

a single value of a, stopping at different values of x+. Forthis single 

value of a, the dynamical equations are integrated numerically to 

produce functions w(x) and v(x); because of the scaling relation between 

all solutions of the equations, we can stop at any point on the 

calculated solution and demand that freeze-out should occur there. 

Equations (4.4) then give the ratios of the three physical lengths in 

the problem, RM, R *’ and R 
Pl’ 

Demanding that freeze-out occur at 

different points in the integration (giving any desired length ratios) 

is equivalent to choosing different values of a to give the desired 

length ratios at freeze-out. How this is accomplished is illustrated in 

Appendix A for the D = 2, d = 1 analytic solutions. 

In the limit as the freeze-out epoch gets close to the final 

singularity, we can approximate w and v by leading terms in.a power-law 

expansion. Putting y = x3 - x, where x 
3 is the position of the final 

singularity, we obtain 

w = x3 ,“g 1 ;; Cl + 41 Y + O(Y12 

” _ b 
1 

y2cl - l/d 

(4.5.a) 

(‘4.5.b) 

where b, is a constant, and we have defined q = [D(N - 1)/d]“‘. (These 

power-law3 are valid for D > 1 only; the special case D = 1 will be 

dealt with separately). Note that the constant in front of v is not 

determined except by numerically calculating a complete solution and 

matching it onto the approximation. The behavior of RD and Rd near x 
3 
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is 

SD - Y 
l/(N - 1) + l/q 

(4.6.a) 

R 
d 

_ y(l - q)/(N - 1) (4.6.b) 

which supports our previous assertion that RD and R d cannot both go to 

zero except at x = 0 (the power of y in Rd is 20 for D > 1). The 

relative scaling of the three lengths near the final singularity is 

(%ld-’ - Y 
C(D/(N - 1) - Cd + 1)/q] 

(&Jd-’ _ y’-2/q 

(4.7.a) 

(4.7.b) 

R * 
- -Y 

l/(N - 1) + l/q 

RM 
(4.7.c) 

In the special case of only one extra dimension, the form of the 

functions w and v near the final singularity is slightly different 

because the w’ 2 term in equation (2.12a) vanishes. The singularity 

becomes logarithmic, with w and v going as 

w - 26 x 
2 

1*(1/y) (4.8.a) 

Y - 4d Cd+1 ) 2~: ln(l/y). (4.8.b) 

For D = 1 the two scale : factors near the singularity behave as 
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R 
D 

- y(d + 1)/d Lln(,,y),(d + 2)/2d (4.9.a) 

Rd - Cln(1 /y)1”2d 

and the length ratios behave as 

R*‘$q - (ml *‘s 1’2 y(d+l)/d 
Cln(l/y)l(d+*)'2d 

(4.9.b) 

(4.10.63) 

(R,/R~~I~-' - lfsnxs y-1 (4.10.b) 

(RM/Rpl)d-’ - 
(2dXs)“d 

[d(d+,)](d+‘)‘2 ’ 
-(d*+d-1)/d Cln(,,y),-(d+2)(d-l)/2d 

(4.1O.c) 

V ENTROPY PRODUCTION 

Tne quantity of physical interest is the entropy contained in a 

horizon VOllXE after freeze-out. If the entropy is large, S > 10a8, 

then one is justified in starting a (3 + 1 )-dimensional cosmological 

model at T = T, with initial conditions that are smooth over distances 

larger than the Hubble length (i.e. a Friedmann-Robertson-Walker model), 

and curvature small compared to the energy density. In this section we 

calculate the entropy in the horizon volume after freeze-out and show 

that it is small. 

To calculate the entropy density in the non-compact dimensions we 

first take the N-dimensional energy density at stabilization, p 
N 

_ T;+’ 

and integrate over the volume of the extra dimensions to calculate the 

d-dimensional energy density: 
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‘d 
N+1 = VDT, (5.1) 

We then assume that the energy density is instantly thermalized to give 

an d/(d+l) entropy density sd = pd . Therefore the d-dimensional entropy 

density is given by 

(5.2) 

s N+l d/(d+l) 
d=LVDT, 1 

= T; = Rjd 

D where we have used VD = R*, and T,R, = 1. 

In the d-dimensional space, the horizon length is defined in the 

standard way as 

t 

‘h 
x 0(X’) 

- Rd(t) I dt' [Rd(t’)l-’ = YRdW I I dx’. 
0 o d 

Note that lh is independent of the scale chosen for Rd, as of cowse it 

must be since lh is a measurable quantity. 

The entropy in the horizon volume is given by Sd = sdlE = h *. In ld/Rd 

terms of u and v 

(Q/D = Rti-N/d VN/2d 7 UD/d y-D/2d dx, 

0 
(5.4) 

where the factor N in front arises from the combination Yn N’D. This 

expression is easily checked to be invariant under the scaling discussed 

in Section III. 

Using the expansions of the previous section for the behaviour of w 

and v close to the final singularity, we find for D > 1 
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Sd - Y 
-N/q ,is-' mD/dv-D/2ddx,]d. 

(5.5) 
0 

Here, as before, y = xs - x, where xs is the final singularity. The 

integrand in (5.5) goes to zero as the singularity is approached, so the 

leading behavior is the power-law in front of the integral. This means 

that the entropy in a horizon volume at freeze-out gets indefinitely 

large as freeze-out occurs closer to the singularity. From (4.7.~) it 

can be seen that the ratio of the freeze-out scale to the maximum size 

of the compact dimensions goes to zero as the singularity is approached, 

but the other two ratios may vanish or diverge depending on the number 

of dimensions. 

The fact that the entropy in a horizon volume gets indefinitely 

large near the final singularity seems to suggest that extra dimensions 

can solve the entropy problem. However, in any acceptable model, we 

demand 

R, 

ii- 2 O(1) , (5.6) 
Pl 

in other words, the Kaluza-Klein scale must be greater than the Planck 

scale. 

In Figure 3 we give the result of numerical calculations for the 

entropy assuming d = 3. From the figure it is seen that if 

%‘Rpl = ,oOQ , then neglible entropy is created. This is expected, 

since if we use (4.7.b) in (5.5) to calculate the leading behavior of 

s3’ 
we find (for D > 1) 
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1”s - 
3 

-2(0+3)[3/D(D+2)1"' In cR ,R 

l-2[3/D(D+2)1”’ * Pl 
) 

- -2J31n(R,/Rpl) (D > > 3). (5.7) 

Note that for D < 2, the entropy is maximal for RJR - Pl 
> > 1, while for 

D 2 3, the entropy is maximal for RJR 
Pl 

< < 1. However S3 is O(1) if 

R*/Fi 
Pl 

is O(1). 

Note that if we relax our assumption that R, = RKK and allow a 

Period of additional decrease in RD before stabilization, there will be 

no additional entropy production. 

VI CONCLUSIONS 

The standard Friedmann-Robertson-Walker cosmology based upon the 

symmetry R’ X S3 is a remarkably successful model. However it has 

several undesirable features. The effective curvature of S3 is today 

much different than any reasonable microphysics scale (such as the 

Planck scale). Homogeneity and isotropy are initial conditions of the 

model and do not follow from any reasonable principle. Finally, the 

standard model has particle horizons - the universe we see now was 

causally disconnected at earlier times. 

Guth’ ’ has shown that creation of a large amount of entropy at an 

early epoch can explain homogeneity and isotropy , and while it doesn’t 

remove particle horizons, it can push the horizon “out-of-sight”. In 

the inflationary universe picture the entropy production is the result 

of the release of a latent heat in some cosmological phase transition 

associated with spontaneous symmetry breaking. While this approach may 
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indeed prove to be the origin of the entropy, it is worthwhile to 

investigate other possible origins of entropy production. 

In this paper we have chosen a particularly simple extension of the 

standard model to accomodate extra dimensions; namely a cosmology based 

on the symmetry R’ X Sd X SD, where d is some number of dimensions large 

today, and D is Some number of compact dimensions. In fact we have only 

studied the case where the curvature of Sd is zero (i.e. Sd+Rd). 

However, if a large amount of entropy is produced in the freeze-out of 

the D-dimensions, 30 long as the curvature of Sd is somewhat smaller 

than the curvature of SD, the effective curvature of Sd at early times 

wwld be zero. 

A desirable cosmology might be one based upon R’ xsdx SD, where 

the curvature of SD is somewhat larger than that of Sd, but both are 

comparable to Some microphysics scale. The scale factor associated with 

SD will reach some maximum value and start to decrease. As it starts to 

decrease the mean volume will decrease, hence in an isentropic expansion 

the temperature will increase. Eventually the scale factor decreases 

sufficiently fast such that the curvature of the D-dimensions is smeller 

than the temperature and the modes associated with excitations of the 

extra dimension3 will freeze-out, releasing entropy into d-dimensional 

excitations. The entropy release effectively inflates the d-dimensional 

space, giving all the desiderata of inflationary models. 

By explicit numerical calculations we have shown that the above 

proposed cosmology cannot work. Since gauge coupling constants are 

related to ratios of the Kaluza-Klein scale to the Planck scale, the 

ratio cannot be much different from unity. The entropy created at 

freeze-out, however, scales as the ratio of the Kaluza-Klein seals to 
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the Planck scale, and is much less than necessary to solve any 

cosmological problems. For instance for D > > 3, using (5.7), to have 

s3 1 1oa* we wobld have to set RJR - lo-=, a quite unreasonable 

value. For D = 3, S 
3 

- (R,/Rpl)-50, andP1sufficient entropy might be 

produced with R,/Rpl = IO-'. However, since gauge coupling constants are 

proportional to Rpl/R,, we expect R 
Pl 

< R,. In Figure 4 WP give S3 as a 

function of D for RJR 
Pl 

= 1. As D increases, S3 decreases - hence the 

title of the paper. 

Although the model we considered did not produce enough entropy, 

the basic idea of a temperature increase in expanding dimensions due to 

the contraction of compactified dimensions is an attractive, simple 

method for increasing the entropy density. The approach is sufficiently 

attractive that we now discuss some ways to relax the assumptions we 

made so as to allow enough entropy production. The first assumption was 

that the metric should be a solution of Einstein’s equations. However. 

since we want the extra dimensions static today, we must add either 

12 external matter fields, or a cosmological constant. l3 It may be possible 

that these modifications to the field equations may change the solutions 

enough to either steepen the dependence of S3 upon R,/Rpl, or shift the 

curves in Figure 3 to larger values of RJR 
Pl’ 

It may also be the case 

that there are two extra dimensions which have nothing to do with the 

observed gauge symmetries. For instance if D = 2 and R, = 3x103R 
Pl' 

then sufficient entropy is produced. Two compact dimensions are 

insufficient to give all the observed low energy gauge symmetries, but 

the resulting gauge symaetrics from the two-dimensional compact space 

may have all their low-mass particles (m 5 m pl) be gauge singlets, and 

hence unobservable today! 6 Then there is the possibility that 
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stabilization occurs when RT Z 1. In this case it is possible to create 

enough entropy and still have RJR 
Pl 

of O(1). The entropy within a 

horizon volume is (for D >> 3) S3 - (RT)5D’2. By choosing RT = IO, 

D - 36 it is possible to create enough entropy and not have any 

unnaturally large numbers built into the model. We thank Abbott, Barr 

16 and Ellis for bringing this last point to our attention. 

This work was supported in part by the Department of Energy and 

NASA. 
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Appendix A 

In this appendix we use the analytic solutions to the field 

equations found by Sahdev6 to demonstrate the scaling of the equations 

discussed in Section 3, and to illustrate by an analytic example the 

numerical calculation of the entropy 17 . 

The analytical solution is for the case D = 2. d = 1. 

equations (2.12) become 

uu’r - 4 w’ 3 2 - x&j’ + zw + x2 = 0 

2w - !JJw’ = 12-f 

V’ 3 0’ x 
; -2; =; I 

which have solutions given by 

w-x 2 - ax4 

v = ax2(x2 - ax4) 

The field 

(A.1 .a) 

(A.1 .b) 

(A.1 .c) 

(A.2.a) 

(A.2.b) 

where a is an arbitrary (positive) constant that generates the expected 

one-parameter family of solutions. Note that for small x 

N-l 2 _ ND 4 
w =7x -6 ax + 0(x6) (A.3.a) 

v = ax4 + 0(x6) 

as given in (3.1). 

(A.3.b) 

The compact and non-compact scale factors ape given by (2.13) 

RD = &N/D .N/N-1 “-l/2 = ,3/2Cx-ax3)-1/2 

R 
d 

= UN(1-D)/d(N-i)vD/2d = ax2~x2-ax4~-1/2 

(A.4.a) 

(A.4.b) 

and the mean volume is 

o = ul/Wl) = (x2-ax4)“2. (A.51 

Notice that at the second singularity, x s = l/v%, the mean volume 
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vanishes (0 + o), while the scale factor for the non-compact dimension 

diverges (Rd + -). 

As discussed in Section 3, if w(x) and v(x) are solutions, then 

b2w (x/b) = x2 - Lx 4 

b2 
(A.6.a) 

b2v (x/b) = ?-x2 (x2 - a .‘I) 
b2 2 (A.6.b) 

are also solutions. as can be easily seen as (A.61 is the same as (A.21 

with a + a/b’. Thus if we have solutions to the field equations for one 

value of a. all other solutions may be generated by scaling 

(w(x) + b’w(x/b), v(x) + b2v(x/b)), as the scaling is equivalent to a 

solution with a different Value of a. 

RD has a maximum value Of RM - 2a -312 /3aJ3 which occurs at 

*M = (3a)-“‘. Therefore we can express RD as 

3J3 (x - ax31 

RD-RMla ~- .1/z 

and for a particular value of a (a, = Z/j&) we Will have 

RD = RM ~~‘~/v”~ , i.e. a -3’2 = R M. Let us call the functions w and v 

with a = a,, W, and v, . With RH = c( -312 , the expression for the constant 

B becomes (after substituting Y = Na -N/D) 

B = 8n~?i CZ-‘~‘~ poaoN+’ 

= 24nc R; poaz (~.8) 

using P,O, 
N+l = constant and B = 1, 

p =-L 1 

24&204 il = 24nCR2w2 ’ II 1 

(A.9) 

and using the fact that Rz = RQw6”-2 
M 1 i 

[cf. (4.111 
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2 4 

P$ 
%Pl XII . 

24T&: 
(A.101 

At freeze-out pR; = 1, so [cf. (4.211 

4 
Y* 24nG 

2 
-=3- . 

(A.11) 

V1* 

Using the definition of c = Rz N pl (for d = 1, the Planck constant is 

dimensionless: ?I 
PI 

is the Planck number) we see 

4 
*1 * 24nR’N 
es * Pl 

2 
“1’ R2 M 

3 

= 24nN 
Y * 
- 

Pl “1 k 
(A.12) 

where the second equality comes from RD = F$w, 
312 -l/2 v, . Equation (A.12) 

then gives the freeze-out value of Y,* and w,* in terms of the Planck 

number (cf. 4.4.~) 

Since w,+Jv,~ = (a,xr) if we choose a Planck number, we pick the 

freeze-out value of x, 3 x1*, 

2 
al9 * = (24nNpl)-’ ) (A.14) 

Now the equations are invariant under the scaling w(x) + b’w(x/b), 

v(x) + b2”(x/b), so the ratio w,/v, is invariant under x + x/b. 

Therefore (A.14) is true for any value of b, hence any value of a, since 

the scaling is equivalent to a different choice of a. From (A.14) we 

see that stopping at different xy in the evolution and demanding 
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freeze-out is equivalent to choosing different values of a. So we may 

examine the entire family of solutions by solving the system for one 

value of a and demanding freeze-out at different values of xy. However 

it should be obvious from (4.4.~) that for definite values of d and D, 

there is only one Value of xt (i.e. only one among the family of 

solutions) that gives a particular value of R,/R 
Pl’ 

The entropy, S,, in the non-compact dimension at compactification 

is [cf. (5.411 

S a 3w-3yn3/2 j*+*dx 
1 * 

0 

3a2x!j - a’xi 
= 

(ax: _ a2x4j3/2 
Y 

(A.15) 

Notice that at the second singularity, x = l//a, the entropy diverges. 
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Figure .l 

The compact (RD) anb open (R6) scale factors as a function of x/xs where 

x3 is the postion of the final singularity. Note that both go to zero 

in the same way at x = 0. At x = x3, RD + 0 while R,, + -. 
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Figure 2 

-1 The inverse of the mean volume, o , as a function of x/xs for the model 

of Figure 1. The N-dimensional entropy density, s7 OL TV, 1.3 

-1 proportional to 0 . 
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Figure 3 

ohs entropy in the horizon volume of the 3 non-compact dimensions, S3, 

as a function of R,/Rpl. For D 2 3, Rkk/Rpl reaches a maximum value and 

decreases [in accord with (4.‘7.b)]. Therefore R,/Rpl IJluSt be SZ!Ull for 

a large s 3. For D = 1,2, S3 increases with increasing R,/R Pl’ 
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The entropy, s 
3’ 

as a function of the number of dimensions, D, assuming 

the freeze-oil’; of the extra dimensions happens at R, = R 
Pl’ 


